synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival.

نویسندگان

  • Lisa N Petrella
  • Wenchao Wang
  • Caroline A Spike
  • Andreas Rechtsteiner
  • Valerie Reinke
  • Susan Strome
چکیده

Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse Chromatin Remodeling Genes Antagonize the Rb-Involved SynMuv Pathways in C. elegans

In Caenorhabditis elegans, vulval cell-fate specification involves the activities of multiple signal transduction and regulatory pathways that include a receptor tyrosine kinase/Ras/mitogen-activated protein kinase pathway and synthetic multivulva (SynMuv) pathways. Many genes in the SynMuv pathways encode transcription factors including the homologs of mammalian Rb, E2F, and components of the ...

متن کامل

Ectopic expression of germline genes and HTA are suppressed by loss of MES-4, the MES-2/3/6 complex and other germline chromatin modifiers. Our findings suggest that synMuv B(+) function antagonizes a germline chromatin state in somatic

INTRODUCTION The development of an organism relies on a series of cell fate decisions. One of the most pivotal of these decisions is that between soma and germ line. It is important to specify a small number of germ cells within a mostly somatic organism in order to ensure both the survival of the individual and its fertility. The single-cell embryo has a number of attributes of the germ line, ...

متن کامل

The Caenorhabditis elegans Synthetic Multivulva Genes Prevent Ras Pathway Activation by Tightly Repressing Global Ectopic Expression of lin-3 EGF

The Caenorhabditis elegans class A and B synthetic multivulva (synMuv) genes redundantly antagonize an EGF/Ras pathway to prevent ectopic vulval induction. We identify a class A synMuv mutation in the promoter of the lin-3 EGF gene, establishing that lin-3 is the key biological target of the class A synMuv genes in vulval development and that the repressive activities of the class A and B synMu...

متن کامل

C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates.

The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate chromatin and influence transcription in other organisms similar to members of the Myb-MuvB/dREAM, NuRD and Tip60/NuA4 complexes. To determine how these chromati...

متن کامل

A Forward Genetic Screen for Suppressors of Somatic P Granules in Caenorhabditis elegans

In Caenorhabditis elegans, germline expression programs are actively repressed in somatic tissue by components of the synMuv (synthetic multi-vulva) B chromatin remodeling complex, which include homologs of tumor suppressors Retinoblastoma (Rb/LIN-35) and Malignant Brain Tumor (MBT/LIN-61). However, the full scope of pathways that suppress germline expression in the soma is unknown. To address ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 2011